
Hyper Heterogeneous Cloud-based IMS Software
Architecture: A Proof-of-Concept and Empirical Analysis

Pascal Potvin1,2, Hanen Garcia Gamardo1,2, Kim-Khoa Nguyen2, Mohamed
Cheriet2

1Ericsson Canada inc., Town of Mount-Royal, Canada

{pascal.potvin, hanen.garciagamardo}@ericsson.com
2École de Techologie Supérieure, Montréal, Canada

{knguyen}@synchromedia.ca
{mohamed.cheriet}@etsmtl.ca

Abstract. The IP Multimedia Subsystem (IMS) defined by the 3GPP has been
mainly developed and deployed by telephony vendors on vendor-specific
hardware. Recent advances in Network Function Virtualisation (NFV)
technology paved the way for virtualized hardware and telephony function
elasticity. As such, Telecom vendors have started to embrace the cloud as a
deployment platform, usually selecting a privileged virtualization platform.
Operators would like to deploy telecom functionality on their already existing
IT cloud platforms. Achieving such flexibility would require the telecom
vendors to adopt a software architecture allowing deployment on many cloud
platforms or even heterogeneous cloud platforms. We propose a distributed
software architecture enabling the deployment of a single software version on
multiple cloud platforms thus allowing for a solution-based deployment. We
also present a prototype we developed to study the characteristics of this
architecture.

Keywords: Cloud Computing, Heterogeneous Cloud, IMS, NFV, Software
Architecture

1 Introduction

The IMS [1] is a standardized solution that addresses an operator’s need to provide
advanced services on top of both mobile and fixed networks. It uses the Session
Initiation Protocol (SIP) to establish and manage sessions. Fig. 1.A presents a view of
the IMS as it is currently standardized. We consider the simplified view of the IMS
with its main functions; Call Session Control Functions (CSCF), Home Subscriber
Server (HSS), Multimedia Telephony (MMTEL) and Media Resource Functions
(MRF) circled in Fig 1.A. Current IMS deployments are typically done on vendor-
specific hardware. For example, Ericsson has a family of hardware platforms [2] for
IMS deployment purposes. In other words, IMS functions are customarily deployed
on dedicated physical nodes. Fig. 1.B shows a possible deployment of the core IMS
functionality on server racks.

The Network Function Virtualisation (NFV) standardization effort [3] has recently
sought to introduce virtualization platforms for telephony functions and IMS. The

NFV standard leverages the evolution of the current (predominantly) vendor-based
hardware deployment consisting of Physical Network Functions (PNF) to a vendor-
agnostic hardware platform running on virtualized hardware with Virtual Network
Functions (VNF). NFV introduces the concept of elasticity for telephony application
deployment, allowing a wide range of potential implementations of the elasticity
concept from no implementation at all to fully automated.

Fig. 1. (A) The IP Multimedia Subsystem (IMS) with the simplified view we consider being
circled; (B) A possible IMS deployment on server racks.

Until very recently, the deployment of a VNF was still executed on a per node

basis, thus providing coarse scalability and limited elasticity [4]. The problems
associated with such coarse scalability are well covered in [5] and the general
problem of scaling the IMS [6] is considered in [4] and [7]. Prior solutions focused on
resource over-provisioning to solve scalability issues leading to poor resource
utilization derived from scaling on a per-node basis. A dynamic distribution, or
concentration of IMS functionality has been proposed [8], but this still maintains
node-based coarse scaling. This approach helps increase utilization but fails to solve
the over-provisioning issue. A similar approach, so called “Merge-IMS” [9] proposes
a pool of IMS VMs containing CSCF and HSS functionality whereby a specific VM
instance is assigned to a subscriber at registration.

Today, Cloud providers usually build their cloud on homogeneous commoditized
hardware to reduce acquisition and operating costs. As Cloud technology is being
adopted, Telecom vendors might have to deploy their software on an operator’s cloud
which is very different from one operator to another. Part of the Telecom vendor’s
software functionality might be better suited for certain types of hardware. Given this,
the ability to deploy the same software in a solution-defined heterogeneous pool of
computing resources is desirable.

The remaining sections of this paper are organized as follows. Section 2 presents
previous work related to our research. Section 3 describes the three main layers of the
“Hyper Heterogeneous Cloud” architecture we named Unity: i) the Unity architecture
and the Unity framework, ii) the re-designed IMS application running on the Unity
framework, and iii) the hardware platform used for our implementation and

experimentations. Section 4 describes our experiment and finally in Section 5 we
discuss our findings and conclusions.

2 Related Work

So far, the definition of “Heterogeneous Cloud” is still unclear. Some authors
associate it to the Cloud software stack currently being built by multiple vendors [10]
e.g. a management tool from one vendor driving a hypervisor from another. Others
associate it to the use of hardware clusters that contain heterogeneous equipment
[11],[12] e.g. general purpose computing platforms sitting next to specialized
accelerators or mixed-characteristic general computing platforms where some
equipment has faster processing, better I/O capacity or provides different
memory/storage capacities. Nevertheless, much work has been done on the
Heterogeneous Cloud. In [11] the authors propose a solution to schedule tasks to best
fit hardware computing resources; in [12] the authors propose a cloud built of a mix
of Central Processing Unit (CPU) and Graphical Processing Unit (GPU) based
computing resources through virtualization. Another CPU/GPU study [13] looks at
how proper allocation and scheduling on such heterogeneous cloud can benefit
Hadoop [14] workload.

Unfortunately, to the best of our knowledge, no architecture has yet been proposed
for the telecom sector in order to provide portability between multiple cloud
environments or to enable solution-oriented heterogeneous cloud deployments. At the
same time, no approach has been proposed to distribute and instantiate core IMS
functionality in an on-demand, per subscriber and per service basis. This paper is
therefore dedicated to address the following questions: i) Can we define a cloud-based
software architecture that can be easily deployed on heterogeneous hardware clusters
(containers, virtual machines, bare metal servers clusters, specialized accelerator
clusters…)?, ii) Can we implement an IMS over such an architecture in order to
provide on-demand per subscriber and per service functionality?, and finally, iii) what
would be the characteristics of such an architecture and how does it compare to a
node-based deployment?

3 Unity Cloud

The “Hyper Heterogeneous Cloud” architecture named Unity that we propose in
this paper can be deployed on a set of different hardware infrastructures, using a mix
of management tools and a mix of deployment technologies. In other words, part of
the deployment may be on Virtual Machines (VMs), on containers and on bare metal
to take advantages of the various platforms and their availability. Our goal is to build
a system and software architecture which allows a single software base to be deployed
on heterogeneous hardware and cloud platforms. Specific requirements are met
through deployment configuration rather than a design for a specific platform set.

To study the characteristics of a Hyper Heterogeneous Cloud Deployment
Software Architecture, we built a simplified IMS system on a Microservices-based

architecture [15]. This gives us the flexibility to distribute the IMS functions on a
combination of platforms, through a Descriptor file which defines the available pools
of platform resources and the deployment model of the Microservices. The Meta
Manager and Orchestrator we built can deploy the functionality on heterogeneous
platforms. This approach allows defining Hybrid deployments since the defined
platforms could as well be provided by a Public Cloud. The list of Microservices
developed for the Unity Cloud and the IMS functionality implemented is detailed
later in this paper. We first focus on the software architecture and infrastructure
enabling a Hyper Heterogeneous Cloud deployment.

Fig. 2. Distributed deployment of Units on Pouch scaling as needed.

Fig. 3. Concept of Pouch deployed on XaaS.

In this architecture the Cloud platform is responsible for allocating computing,

network and storage resources to provide the required telecom functionality on a per-
user or per-service basis. In order to cater to the heterogeneity of the platforms (PaaS,
IaaS, BareMetal, etc.) we introduce an abstraction layer which represents an instance
of a computing resource on a platform. We define a Pouch (Fig. 2 and Fig. 3) as a
computing resource combined with a lightweight platform framework. The
framework supports functions which are offered as a library to the application code

rather than an over the network as a service. The Pouch can be seen as a set of
libraries and daemons running on a computing resource to support the Microservices
and facilitate access to other services. In practice a Pouch can be a Bare Metal server,
a Virtual Machine on IaaS, a Container/job on PaaS, a Microservice on a Unikernel,
etc. The number of Microservices and instances held by a Pouch can vary from one to
thousands depending on the characteristics of the host where the Pouch is deployed.

One can scale out any number of Pouches on a platform; a Unit which can be
assimilated to an actor in the Actor Model and instantiated within a Pouch is able to
transparently communicate with other Units within other Pouches through the
Communication Middleware.

3.1 The Unity Cloud Architecture

The Unity architecture (Fig. 4) defines a set of functionality or services allowing a
Microservices-based application to be deployed on Hyper Heterogeneous Cloud
platforms. The Microservices performs a specific task and covers a single scaling
domain. For example a Microservice may handle a limited number of related
telephony services or the HSS interrogating functionality of an application. The
Microservices are deployed as “Units” as follows.

Fig. 4. Unity Cloud Architecture.

Meta Management and Orchestrator (MMO) is responsible for reading the
Descriptor file and deploying the appropriate Pouches on the available platform pools.
It also monitors usage information from the CMWs via the IDS and instantiates new
Pouches to provide elasticity.

Element Manager (EM) is responsible for configuring the Microservices (called
Units) running on the Pouches.

Communication Middleware (CMW) forms the basis of the Unity Cloud
Architecture; each Pouch is required to run a single instance of a CMW. It manages
most basic functionality that is required for the Unity Cloud operation such as Inter-
Unit communication, Unit spawning, Pouch monitoring and Unit/Service address
resolving.

Node Selector Service (NSS) implements the logic of spreading the Subscribers’
service instances on the available Pouches. It ensures that most of the service requests
for a Subscriber are made to the same Pouch in order to maximize local memory
cache hit.

Information Distribution Service (IDS) allows information exchange based on a
publish/subscribe system. Some of the information disseminated through it includes:
resource utilization, service/unit resolving updates, system status updates, log levels
and log entries, global configuration, etc.

Deployment Database Service (DDS) maintains copies of VM images and service
and Microservice binaries that are necessary to deploy software on the Pouches of the
system.

Log Gathering Service (LGS) sorts and consolidates the logging information
received from the Pouches, Services and Microservices.

3.2 The IMS Telephony Application

To study the advantages of a Hyper Heterogeneous Cloud-based approach (fully
distributed and elastic deployment on heterogeneous platforms) versus a Node-based
approach (functions constrained to dedicated hardware or virtual machine (VM)) in
terms of telecommunication functionality, we built a simplified IMS on the Unity
Cloud Microservices-based architecture with the goal of deploying it in a
heterogeneous cloud infrastructure. This allowed us to select the distribution of the
functions on the physical or virtual platform i.e. IMS functions can be fully
distributed on a pool of compute resources (Cloud-based) or on a specific compute
resource (Node-based) given a single software base, thus enabling a fair comparison.
The simplified IMS functions are split amongst a number of communicating
Microservices joined in a complete service chain (or call chain). Fig. 5 illustrates how
the Microservices are linked in a complete service chain to provide a phone call
between two subscribers.

The Microservices (also called Units) developed for the Unity Cloud IMS
Telephony Application are listed below with notes as to which of the IMS functions
they provide.

SIP Handler (SIPh) implements the SIP processing functions of the P-CSCF and the
I-CSCF. It is the first Unit involved in a service setup scenario. It uses the Node
Selector Service to figure out where the Call Session Unit should be instantiated and
forwards it the received SIP messages.

Fig. 5. Microservices involved in a typical two-party call scenario.

Call Session (C) performs the functionality of an S-CSCF. It handles the request
coming from the UA, fetches the Subscriber profile based on service triggers and
builds the appropriate service chain to provide the requested service. The C Unit is
instantiated on request to handle the Subscriber service and is terminated when the
service has completed e.g. during a call, it remains active until the SIP Bye message
has been acknowledged. The C Unit makes use of the Node Selector Service in order
to figure out where the terminating Call Session Unit should be instantiated.

HSS Front-End (H) is used to fetch a Subscriber profile. It is responsible for
querying the HSS database in order to get this information.

Diameter Handler (Diah) is used by the H Unit as an interface that implements the
diameter protocol towards the HSS in order to fetch a Subscriber profile.

Anchor Point Controller (A) covers the MRFC functionality controlling the Media
Processor Unit as needed for the requested service and informs the interested Units of
the availability of the functionality in the service chain. The A Unit’s main function is
to negotiate the media codec so that the UA can properly exchange media with the
Media Processor Unit.

Telephony Server (T) provides telephony related features to the Subscriber. As an
IMS MMTEL it can listen to DTMF activities to trigger supplementary services like
ad-hoc conferences by adding another call leg to the current call. It is created by the C
Unit on both the originating and terminating sides based on the Subscriber profile
fetched via the H Unit; it connects to the M Unit to receive the media plane telephony
events and to control the connectivity of the media plane.

Media Processor (M) is a dialog-based Microservice that handles the media plane of
the call through RTP as an IMS MRFP would do. It provides point-to-point
connectivity for basic 2-way calls and provides voice mixing in conference calls.

3.3 The Hardware Platform

We deployed our Microservices IMS Telephony application on two distinct platforms.
The first deployment platform (Fig. 6.A) is based on a cluster made of eight
Raspberry Pi’s [16] (RPi). The benefits of this platform are twofold. Firstly, it is a
cost effective way to have a 24/7 cloud we can experiment on and secondly, RPi
being a simple single core computer, limits the number of variables required to
consider while studying the system.

Fig. 6. (A) Eight Raspberry Pi boards Unity Cloud 3D printed Cabinet; and (B) Unity
deployment on OpenStack.

The Unity Cloud RPi platform is built of:
• 8 Model B RPi stacked together in a custom made 3D printed cabinet

where each RPi is set in a removable sliding tray.
• 8 custom-made RPi Daughter Boards enabling the display of information

via 2 RGB LEDs and allowing input via a button.
• 1 Gigabit Ethernet switch providing the backbone network for the system.
• 1 Wi-Fi router providing access to UEs (hosting the UA) and providing

the NAS functionality on a USB Storage Device.
• 1 Power Supply for the Cabinet.
The second deployment (Fig. 6.B) is on top of OpenStack deployed on an Ericsson

Blade System (EBS) [17] consisting of 8 VMs (2 virtual cores and 2GB of RAM)
deployed on 4 physical blades. An automatic orchestration mechanism is triggered to
balance load of the blades though VM migrations.

4 Experimentation

The first experiment is carried out to demonstrate the compatibility and compliance
between different cloud-based deployment platforms (RPi cluster and EBS VMs)
regarding IMS telephony Microservice functions developed for the Unity Cloud.

Fig. 7. Average and Standard Deviation of the Call Establishment Latency on RPi cluster (left)
and on EBS VMs (right).

Our measurement consists of a collection of in-process logs which are collected in

a file on the Unity Cloud. The open-source tool SIPp [18] has been used to generate
SIP traffic.

We measure the delay from the reception of the SIP INVITE by the Unity Cloud
until it is sent to the terminating UA (Fig. 7). This way we keep the measurement to
the portion that is directly dependent on Unity Cloud processing and independent
from UA delays. We also take measurements about the average CPU load on all
Computing Units (CUs) against the number of concurrent calls being served by the
system (Fig. 8). For all measurements we settled on:

• Call Rate: 30 2-way calls establishment / minute
• Call Duration: 3:20 minutes
• Subscribers: 200 registered users
• Background Registration: 20 re-registration / minute
As shown in Fig. 7, calls could be successfully established in both experimental

platforms and the QoS characteristics show similar behavior. QoS characteristics are
obviously better on the more powerful EBS but the QoS trend is similar to the RPi
cluster. In Fig. 8, we notice similarities in the resource usage profile where average
CPU usage increases relatively linearly with the number of concurrent calls.

In order to compare the proposed Microservice-based architecture (where the
functions can be fully distributed on the available CUs) to the currently prominent
Node-based architecture, (where the functions of a node are bound to a set of CUs)
we conducted a set of experiments where the functions developed for the Unity Cloud
were statically bound to a specific CU thus replicating the Node-based architecture
(Table 1).

In a Node-based architecture the provisioning of the nodes needs to be perfectly
engineered. However, since we had only a limited number of CUs available and

didn’t have proper methods to manually engineer the provisioning, we evaluated a
number of configurations. These configurations and their functionality distribution are
shown for the 8 available CUs in Table 1.

Fig. 8. Overall CPU usage Average for a specific load measured in the number of concurrent
calls on the RPi cluster (left) and on EBS VMs (right).

Fig. 9. Call Establishment Latency (left) and Data Plane std. dev. to the 20ms boundary
processing time vs the Number Of Calls (right) for the different experimentation
configurations.

Table 1. Experimental configurations for Node-based measurements: S (SIPh), N (NSS), H (H
and Diah), all other Units as previously described.

Config. CU1 CU2 CU3 CU4 CU5 CU6 CU7 CU8
NO1 SN H C C A T M M
NO2 SNH C C A T M M M
NO3 SN H C A T M M M
NO4 SN H C C T MA MA MA
NO5 SNH C C T MA MA MA MA

As shown in Fig. 9 the distributed Cloud-based approach gives similar average

control plane QoS characteristics compared to Node-based approach while avoiding
the worst case scenario exposed by poorly engineered resource allocation. This is
depicted in the Node-based deployment configuration NO3, where the C Unit

processing is starved as it is deployed on a single CU. It is worth noting that the
Cloud-based approach exhibits the best data plane QoS characteristics compared to all
Node-based deployment configurations.

5 Discussion and Conclusion

Our deployment of a Microservices-based IMS telephony solution on different
cloud platforms (RPi cluster and OpenStack/EBS platform) shows that this
architecture enables one-time development of the business logic across multiple
deployments on various platforms through modification of deployment configuration
only. It demonstrates the possibility of defining an architecture supporting Cloud
features, especially automatic scaling out of the business logic for the telecom sector.
Fig. 7 and Fig. 8 show that the QoS of the application and platform (e.g., in terms of
Call Establishment Delay and CPU consumption) are comparable in both RPi and
EBS deployments. A larger number of calls can be handled on the EBS deployment
but the trend of QoS characteristics stays the same. This suggests that we achieved
our goal of defining a cloud-based software architecture that can be easily deployed
on heterogeneous hardware clusters using a single application code base.

In Fig. 9 we observe that accurately allocating resources is required for each node
in a Node-based system, and this must be done statically due to the static
configuration of the Node-based system. For example, dramatic performance
degradation is experienced on NO3 where the lack of resources allocated to the C
Unit degrades the control plane latency in a very noticeable fashion. Aside from
control plane Unit resource allocation, media plane resource allocation must also be
considered. In contrast, the distributed Cloud-based approach allocates the same
amount of resources to both media and control plane and also to each unit since
distribution is based on CPU usage. As such, we observe better media plane
performance and average control plane performance. Using our approach, the
Microservices can be distributed and combined without location restrictions on VMs
in order to efficiently use the available resources. This is an advantage compared to a
Node-based deployment where functionality is bound to specific resources.

In conclusion, a distributed Cloud-based approach can provide automatic platform
resource allocation which cannot be easily achieved by a Node-based architecture.
Failure to properly engineer node resource allocation in a node-based architecture can
lead to major impacts on performance. Node-based deployment also reduces the
reliability of the overall system since if a node is deployed on only one CU and it
fails, then the whole system fails and the service will remain unavailable until that
function is restored. In the distributed cloud-based model, such a failure will
terminate the services hosted on a single CU but the system will remain available to
provide new service instances spread across other available CUs. The hyper-
heterogeneity aspect of the proposed architecture enables us to deploy an application
that is designed once across different cloud platforms, thus easing the job of telco
vendors to deploy network functions on various operator-owned clouds. The hyper-
heterogeneity aspect also allows tailoring of the deployment to take advantage of the
benefits of specific platforms for a given application. For example, an accelerator-

based cloud might be beneficial for media resource processing functions while a
general-purpose cloud might be more appropriate for control information.

In the future it would be interesting to evaluate heterogeneous deployments where
a system would be deployed on integrated clusters of different technologies e.g. bare
metal server pool used for data plane processing and a VM-based cloud used for
control plane processing.
Acknowledgements. This work is sponsored by Ericsson Canada Inc. where we
would like to thank the team researchers developing the PoC: Marc-Olivier Arsenault,
Gordon Bailey, Mario Bonja, Léo Collard, Alexis Grondin, Philippe Habib, Olivier
Lemelin, Mahdy Nabaee, Maxime Nadeau, Fakher Oueslati and Joseph Siouffi.

References

1. 3GPP, “IP Multimedia Subsystem (IMS).” TS 23.228, v. 10.8.0, December 2013.
2. Ahlforn, Goran, and Erik Ornulf. "Ericsson's family of carrier-class technologies."

ERICSSON REV(ENGL ED) 78.4 (2001): 190-195.
3. ETSI, “Network Function Virtualisation (NFV); Virtual Network Functions Architecture.”

GS NFV-SWA 001, v 1.1.1, December 2014.
4. Agrawal, Prathima, et al. “IP multimedia subsystems in 3GPP and 3GPP2: overview and

scalability issues.” Communications Magazine, IEEE 46.1 (2008): 138-145.
5. Glitho, Roch. “Cloudifying the 3GPP IP Multimedia Subsystem: Why and How?.” New

Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. IEEE,
2014.

6. Hammer, Manfred, and Wouter Franx. “Redundancy and Scalability in IMS.”
Telecommunications Network Strategy and Planning Symposium, 2006. NETWORKS
2006. 12th International. IEEE, 2006.

7. Bellavista, Paolo, Antonio Corradi, and Luca Foschini. “Enhancing Intradomain Scalability
of IMS-Based Services.” Parallel and Distributed Systems, IEEE Transactions on 24.12
(2013): 2386-2395.

8. Dutta, Ashutosh, et al. “Self organizing IP multimedia subsystem.” Internet Multimedia
Services Architecture and Applications (IMSAA), 2009 IEEE International Conference on.
IEEE, 2009.

9. Carella, Giuseppe, et al. “Cloudified IP Multimedia Subsystem (IMS) for Network Function
Virtualization (NFV)-based architectures.” Computers and Communication (ISCC), 2014
IEEE Symposium on. IEEE, 2014.

10. D. Wellington, Homogeneous vs. heterogeneous clouds: pros, cons, and unsolicited
opinions, http://www.bmc.com/blogs/what-price-homogeneity, 2012.

11. Xu, Baomin, Ning Wang, and Chunyan Li. "A cloud computing infrastructure on
heterogeneous computing resources." Journal of Computers 6.8 (2011): 1789-1796.

12. Crago, Steve, et al. "Heterogeneous cloud computing." Cluster Computing (CLUSTER),
2011 IEEE International Conference on. IEEE, 2011.

13. Lee, Gunho, Byung-Gon Chun, and Randy H. Katz. "Heterogeneity-aware resource
allocation and scheduling in the cloud." Proceedings of HotCloud (2011): 1-5.

14. Hadoop, http://hadoop.apache.org.
15. Newman, Sam. Building Microservices. " O'Reilly Media, Inc.", 2015.
16. Raspberry Pi, https://www.raspberrypi.org
17. Ericsson BSP 8000, http://www.ericsson.com/ourportfolio/products/bsp-

8000?nav=productcategory008%7Cfgb_101_0538.
18. SIPp, http://sipp.sourceforge.net

